Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cancer Immunol Immunother ; 73(6): 96, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619621

RESUMO

Pancreatic cancer is an aggressive disease with a 5 year survival rate of 13%. This poor survival is attributed, in part, to limited and ineffective treatments for patients with metastatic disease, highlighting a need to identify molecular drivers of pancreatic cancer to target for more effective treatment. CD200 is a glycoprotein that interacts with the receptor CD200R and elicits an immunosuppressive response. Overexpression of CD200 has been associated with differential outcomes, depending on the tumor type. In the context of pancreatic cancer, we have previously reported that CD200 is expressed in the pancreatic tumor microenvironment (TME), and that targeting CD200 in murine tumor models reduces tumor burden. We hypothesized that CD200 is overexpressed on tumor and stromal populations in the pancreatic TME and that circulating levels of soluble CD200 (sCD200) have prognostic value for overall survival. We discovered that CD200 was overexpressed on immune, stromal, and tumor populations in the pancreatic TME. Particularly, single-cell RNA-sequencing indicated that CD200 was upregulated on inflammatory cancer-associated fibroblasts. Cytometry by time of flight analysis of PBMCs indicated that CD200 was overexpressed on innate immune populations, including monocytes, dendritic cells, and monocytic myeloid-derived suppressor cells. High sCD200 levels in plasma correlated with significantly worse overall and progression-free survival. Additionally, sCD200 correlated with the ratio of circulating matrix metalloproteinase (MMP) 3: tissue inhibitor of metalloproteinase (TIMP) 3 and MMP11/TIMP3. This study highlights the importance of CD200 expression in pancreatic cancer and provides the rationale for designing novel therapeutic strategies that target this protein.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Humanos , Imunossupressores , Pâncreas , Microambiente Tumoral
2.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474199

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a 5-year survival rate of 12.5%. PDAC predominantly arises from non-cystic pancreatic intraepithelial neoplasia (PanIN) and cystic intraductal papillary mucinous neoplasm (IPMN). We used multiplex immunofluorescence and computational imaging technology to characterize, map, and compare the immune microenvironments (IMEs) of PDAC and its precursor lesions. We demonstrate that the IME of IPMN was abundantly infiltrated with CD8+ T cells and PD-L1-positive antigen-presenting cells (APCs), whereas the IME of PanIN contained fewer CD8+ T cells and fewer PD-L1-positive APCs but elevated numbers of immunosuppressive regulatory T cells (Tregs). Thus, immunosuppression in IPMN and PanIN seems to be mediated by different mechanisms. While immunosuppression in IPMN is facilitated by PD-L1 expression on APCs, Tregs seem to play a key role in PanIN. Our findings suggest potential immunotherapeutic interventions for high-risk precursor lesions, namely, targeting PD-1/PD-L1 in IPMN and CTLA-4-positive Tregs in PanIN to restore immunosurveillance and prevent progression to cancer. Tregs accumulate with malignant transformation, as observed in PDAC, and to a lesser extent in IPMN-associated PDAC (IAPA). High numbers of Tregs in the microenvironment of PDAC went along with a markedly decreased interaction between CD8+ T cells and cancerous epithelial cells (ECs), highlighting the importance of Tregs as key players in immunosuppression in PDAC. We found evidence that a defect in antigen presentation, further aggravated by PD-L1 expression on APC, may contribute to immunosuppression in IAPA, suggesting a role for PD-L1/PD-1 immune checkpoint inhibitors in the treatment of IAPA.


Assuntos
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Intraductais Pancreáticas , Neoplasias Pancreáticas , Humanos , Antígeno B7-H1 , Linfócitos T CD8-Positivos/metabolismo , Receptor de Morte Celular Programada 1 , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Microambiente Tumoral
3.
Cancers (Basel) ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38339226

RESUMO

The aryl hydrocarbon receptor (AhR) is a ubiquitous nuclear receptor with a broad range of functions, both in tumor cells and immune cells within the tumor microenvironment (TME). Activation of AhR has been shown to have a carcinogenic effect in a variety of organs, through induction of cellular proliferation and migration, promotion of epithelial-to-mesenchymal transition, and inhibition of apoptosis, among other functions. However, the impact on immune cell function is more complicated, with both pro- and anti-tumorigenic roles identified. Although targeting AhR in cancer has shown significant promise in pre-clinical studies, there has been limited efficacy in phase III clinical trials to date. With the contrasting roles of AhR activation on immune cell polarization, understanding the impact of AhR activation on the tumor immune microenvironment is necessary to guide therapies targeting the AhR. This review article summarizes the state of knowledge of AhR activation on the TME, limitations of current findings, and the potential for modulation of the AhR as a cancer therapy.

4.
bioRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38293141

RESUMO

This manuscript has been withdrawn by the authors due to a dispute over co-first authorship that is currently being arbitrated by the medical school at our institution. Therefore, the authors do not wish this work to be cited as reference for the project. Upon completion of the arbitration process, we will take steps to revert the current withdrawn status. If you have any questions, please contact the corresponding author.

5.
Mol Cancer Res ; 22(3): 295-307, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015750

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by progressive, often fatal loss of lung function due to overactive collagen production and tissue scarring. Patients with IPF have a sevenfold-increased risk of developing lung cancer. The COVID-19 pandemic has increased the number of patients with lung diseases, and infection can worsen prognoses for those with chronic lung diseases and disease-associated cancer. Understanding the molecular pathogenesis of IPF-associated lung cancer is imperative for identifying diagnostic biomarkers and targeted therapies that will facilitate prevention of IPF and progression to lung cancer. To understand how IPF-associated fibroblast activation, matrix remodeling, epithelial-to-mesenchymal transition (EMT), and immune modulation influences lung cancer predisposition, we developed a mouse model to recapitulate the molecular pathogenesis of pulmonary fibrosis-associated lung cancer using the bleomycin and Lewis lung carcinoma models. We demonstrate that development of pulmonary fibrosis-associated lung cancer is likely linked to increased abundance of tumor-associated macrophages and a unique gene signature that supports an immune-suppressive microenvironment through secreted factors. Not surprisingly, preexisting fibrosis provides a pre-metastatic niche and results in augmented tumor growth, and tumors associated with bleomycin-induced fibrosis are characterized by a dramatic loss of cytokeratin expression, indicative of EMT. IMPLICATIONS: This characterization of tumors associated with lung diseases provides new therapeutic targets that may aid in the development of treatment paradigms for lung cancer patients with preexisting pulmonary diseases.


Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Neoplasias Pulmonares/genética , Pandemias , Fibrose Pulmonar Idiopática/genética , Bleomicina/toxicidade , Microambiente Tumoral
6.
Front Immunol ; 14: 1289402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152402

RESUMO

Introduction: Metastatic colorectal cancer (mCRC) remains a common and highly morbid disease, with a recent increase in incidence in patients younger than 50 years. There is an acute need to better understand differences in tumor biology, molecular characteristics, and other age-related differences in the tumor microenvironment (TME). Methods: 111 patients undergoing curative-intent resection of colorectal liver metastases were stratified by age into those <50 years or >65 years old, and tumors were subjected to multiplex fluorescent immunohistochemistry (mfIHC) to characterize immune infiltration and cellular engagement. Results: There was no difference in infiltration or proportion of immune cells based upon age, but the younger cohort had a higher proportion of programmed death-ligand 1 (PD-L1)+ expressing antigen presenting cells (APCs) and demonstrated decreased intercellular distance and increased cellular engagement between tumor cells (TCs) and cytotoxic T lymphocytes (CTLs), and between TCs and APCs. These trends were independent of microsatellite instability in tumors. Discussion: Age-related differences in PD-L1 expression and cellular engagement in the tumor microenvironment of patients with mCRC, findings which were unrelated to microsatellite status, suggest a more active immune microenvironment in younger patients that may offer an opportunity for therapeutic intervention with immune based therapy.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Pessoa de Meia-Idade , Idoso , Antígeno B7-H1/metabolismo , Microambiente Tumoral , Linfócitos T Citotóxicos
7.
Clin Cancer Res ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851080

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is generally divided in two subtypes, classical and basal. Recently, single cell RNA sequencing has uncovered the co-existence of basal and classical cancer cells, as well as intermediary cancer cells, in individual tumors. The latter remains poorly understood; here, we sought to characterize them using a multimodal approach. EXPERIMENTAL DESIGN: We performed subtyping on a single cell RNA sequencing dataset containing 18 human PDAC samples to identify multiple intermediary subtypes. We generated patient-derived PDAC organoids for functional studies. We compared single cell profiling of matched blood and tumor samples to measure changes in the local and systemic immune microenvironment. We then leveraged longitudinally patient-matched blood to follow individual patients over the course of chemotherapy. RESULTS: We identified a cluster of KRT17-high intermediary cancer cells that uniquely express high levels of CXCL8 and other cytokines. The proportion of KRT17High/CXCL8+ cells in patient tumors correlated with intra-tumoral myeloid abundance, and, interestingly, high pro-tumor peripheral blood granulocytes, implicating local and systemic roles. Patient-derived organoids maintained KRT17High/CXCL8+cells and induced myeloid cell migration in an CXCL8-dependent manner. In our longitudinal studies, plasma CXCL8 decreased following chemotherapy in responsive patients, while CXCL8 persistence portended worse prognosis. CONCLUSIONS: Through single cell analysis of PDAC samples we identified KRT17High/CXCL8+ cancer cells as an intermediary subtype, marked by a unique cytokine profile and capable of influencing myeloid cells in the tumor microenvironment and systemically. The abundance of this cell population should be considered for patient stratification in precision immunotherapy.

8.
Fed Pract ; 40(Suppl 1): S24-S33, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37727831

RESUMO

Background: Definitions of malnutrition imperfectly reflect nutritional status or predict perioperative consequences. We sought to identify predictive nutritional trends by examining the effect of preoperative weight on postoperative outcomes in patients with colorectal cancer (CRC). Methods: This retrospective review examined 148 patients with CRC treated with curative-intent surgery at the Veterans Affairs Ann Arbor Healthcare System in Michigan from January 1, 2015 to December 31, 2019. We evaluated weight dynamics of patients, starting 1 year before cancer diagnosis until 1 year after surgery. We evaluated the association of these weight dynamics with surgical outcomes. Primary outcomes observed were hospital readmission and length of stay (LOS), chemotherapy completion, and delayed recovery defined as abnormal clinical developments. Results: There were 115 patients in the colon cancer (CC) cohort and 33 in the rectal cancer (RC) cohort. Low preoperative albumin (< 3.5 g/dL) was present in 25 patients with CC (22%) and 11 patients with RC (33%). Six-month preoperative weight loss of at least 3% occurred in 32 patients with CC (36%). Delayed recovery was observed in 35 patients with CC (30%) and 21 patients with RC (64%). Nutrition consultation rates for the CC and RC groups were 15% and 36%, respectively, before the operation; 95% and 100%, respectively, for postoperative inpatients; and 12% and 73%, respectively, for postoperative outpatients. Six-month preoperative weight loss of ≥ 3% was significantly associated with delayed recovery (P < .001) and 60-day readmissions (P = .015) but not increased LOS or chemotherapy noncompletion. Conclusions: A ≥ 3% weight loss 6 months preceding curative surgery for CRC was associated with adverse outcomes. An intensive nutrition prehabilitation program initiated at the time of cancer diagnosis is needed and may reduce associated complications.

9.
iScience ; 26(8): 107408, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37554459

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with high metastasis and therapeutic resistance. Activating transcription factor 4 (ATF4), a master regulator of cellular stress, is exploited by cancer cells to survive. Prior research and data reported provide evidence that high ATF4 expression correlates with worse overall survival in PDAC. Tomatidine, a natural steroidal alkaloid, is associated with inhibition of ATF4 signaling in multiple diseases. Here, we discovered that in vitro and in vivo tomatidine treatment of PDAC cells inhibits tumor growth. Tomatidine inhibited nuclear translocation of ATF4 and reduced the transcriptional binding of ATF4 with downstream promoters. Tomatidine enhanced gemcitabine chemosensitivity in 3D ECM-hydrogels and in vivo. Tomatidine treatment was associated with induction of ferroptosis signaling validated by increased lipid peroxidation, mitochondrial biogenesis, and decreased GPX4 expression in PDAC cells. This study highlights a possible therapeutic approach utilizing a plant-derived metabolite, tomatidine, to target ATF4 activity in PDAC.

10.
Methods Mol Biol ; 2660: 235-246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37191801

RESUMO

The tumor microenvironment (TME), composed of immune cells, antigens, and local soluble factors, is integral to cancer development and progression. Traditional techniques such as immunohistochemistry, immunofluorescence, or flow cytometry limit the analysis of spatial data and cellular interactions within the TME, as they are restricted to colocalization of a small number of antigens or the loss of tissue architecture. Multiplex fluorescent immunohistochemistry (mfIHC) allows for detection of multiple antigens within a single tissue sample, providing a more comprehensive description of tissue composition and spatial interactions within the TME. This technique utilizes antigen retrieval, application of primary and secondary antibodies, followed by a tyramide-based chemical reaction to covalently bind a fluorophore to an epitope of interest and, eventually, stripping of the antibodies. This allows for multiple rounds of antibody application without concern for species cross-reactivity, as well as signal amplification which abrogates the autofluorescence that frequently plagues analysis of fixed tissues. As such, mfIHC can be used to quantify multiple cellular populations and their interactions, in situ, unlocking key biologic data that was previously unavailable. This chapter provides an overview of the experimental design, staining, and imaging strategies using a manual technique in formalin-fixed paraffin-embedded tissue sections.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Imuno-Histoquímica , Imunofluorescência , Anticorpos , Antígenos
11.
Cancer Discov ; 13(6): 1324-1345, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37021392

RESUMO

The adult healthy human pancreas has been poorly studied given the lack of indication to obtain tissue from the pancreas in the absence of disease and rapid postmortem degradation. We obtained pancreata from brain dead donors, thus avoiding any warm ischemia time. The 30 donors were diverse in age and race and had no known pancreas disease. Histopathologic analysis of the samples revealed pancreatic intraepithelial neoplasia (PanIN) lesions in most individuals irrespective of age. Using a combination of multiplex IHC, single-cell RNA sequencing, and spatial transcriptomics, we provide the first-ever characterization of the unique microenvironment of the adult human pancreas and of sporadic PanIN lesions. We compared healthy pancreata to pancreatic cancer and peritumoral tissue and observed distinct transcriptomic signatures in fibroblasts and, to a lesser extent, macrophages. PanIN epithelial cells from healthy pancreata were remarkably transcriptionally similar to cancer cells, suggesting that neoplastic pathways are initiated early in tumorigenesis. SIGNIFICANCE: Precursor lesions to pancreatic cancer are poorly characterized. We analyzed donor pancreata and discovered that precursor lesions are detected at a much higher rate than the incidence of pancreatic cancer, setting the stage for efforts to elucidate the microenvironmental and cell-intrinsic factors that restrain or, conversely, promote malignant progression. See related commentary by Hoffman and Dougan, p. 1288. This article is highlighted in the In This Issue feature, p. 1275.


Assuntos
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adulto , Humanos , Transcriptoma , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/patologia , Microambiente Tumoral/genética
12.
Mod Pathol ; 36(7): 100197, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37105494

RESUMO

Our understanding of the biology and management of human disease has undergone a remarkable evolution in recent decades. Improved understanding of the roles of complex immune populations in the tumor microenvironment has advanced our knowledge of antitumor immunity, and immunotherapy has radically improved outcomes for many advanced cancers. Digital pathology has unlocked new possibilities for the assessment and discovery of the tumor microenvironment, such as quantitative and spatial image analysis. Despite these advances, tissue-based evaluations for diagnosis and prognosis continue to rely on traditional practices, such as hematoxylin and eosin staining, supplemented by the assessment of single biomarkers largely using chromogenic immunohistochemistry (IHC). Such approaches are poorly suited to complex quantitative analyses and the simultaneous evaluation of multiple biomarkers. Thus, multiplex staining techniques have significant potential to improve diagnostic practice and immuno-oncology research. The different approaches to achieve multiplexed IHC and immunofluorescence are described in this study. Alternatives to multiplex immunofluorescence/IHC include epitope-based tissue mass spectrometry and digital spatial profiling (DSP), which require specialized platforms not available to most clinical laboratories. Virtual multiplexing, which involves digitally coregistering singleplex IHC stains performed on serial sections, is another alternative to multiplex staining. Regardless of the approach, analysis of multiplexed stains sequentially or simultaneously will benefit from standardized protocols and digital pathology workflows. Although this is a complex and rapidly advancing field, multiplex staining is now technically feasible for most clinical laboratories and may soon be leveraged for routine diagnostic use. This review provides an update on the current state of the art for tissue multiplexing, including the capabilities and limitations of different techniques, with an emphasis on potential relevance to clinical diagnostic practice.


Assuntos
Neoplasias , Patologistas , Humanos , Imuno-Histoquímica , Imunofluorescência , Neoplasias/diagnóstico , Neoplasias/terapia , Neoplasias/patologia , Biomarcadores , Corantes , Biomarcadores Tumorais/análise , Microambiente Tumoral
13.
Cancer Cell ; 41(2): 304-322.e7, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638784

RESUMO

Immune checkpoint blockade (ICB) can produce durable responses against cancer. We and others have found that a subset of patients experiences paradoxical rapid cancer progression during immunotherapy. It is poorly understood how tumors can accelerate their progression during ICB. In some preclinical models, ICB causes hyperprogressive disease (HPD). While immune exclusion drives resistance to ICB, counterintuitively, patients with HPD and complete response (CR) following ICB manifest comparable levels of tumor-infiltrating CD8+ T cells and interferon γ (IFNγ) gene signature. Interestingly, patients with HPD but not CR exhibit elevated tumoral fibroblast growth factor 2 (FGF2) and ß-catenin signaling. In animal models, T cell-derived IFNγ promotes tumor FGF2 signaling, thereby suppressing PKM2 activity and decreasing NAD+, resulting in reduction of SIRT1-mediated ß-catenin deacetylation and enhanced ß-catenin acetylation, consequently reprograming tumor stemness. Targeting the IFNγ-PKM2-ß-catenin axis prevents HPD in preclinical models. Thus, the crosstalk of core immunogenic, metabolic, and oncogenic pathways via the IFNγ-PKM2-ß-catenin cascade underlies ICB-associated HPD.


Assuntos
Neoplasias , beta Catenina , Animais , Linfócitos T CD8-Positivos , Fator 2 de Crescimento de Fibroblastos , Neoplasias/terapia , Neoplasias/patologia , Progressão da Doença , Interferon gama , Imunoterapia/métodos
14.
bioRxiv ; 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36712058

RESUMO

The adult healthy human pancreas has been poorly studied given lack of indication to obtain tissue from the pancreas in the absence of disease and rapid postmortem degradation. We obtained pancreata from brain dead donors thus avoiding any warm ischemia time. The 30 donors were diverse in age and race and had no known pancreas disease. Histopathological analysis of the samples revealed PanIN lesions in most individuals irrespective of age. Using a combination of multiplex immunohistochemistry, single cell RNA sequencing, and spatial transcriptomics, we provide the first ever characterization of the unique microenvironment of the adult human pancreas and of sporadic PanIN lesions. We compared healthy pancreata to pancreatic cancer and peritumoral tissue and observed distinct transcriptomic signatures in fibroblasts, and, to a lesser extent, macrophages. PanIN epithelial cells from healthy pancreata were remarkably transcriptionally similar to cancer cells, suggesting that neoplastic pathways are initiated early in tumorigenesis. Statement of significance: The causes underlying the onset of pancreatic cancer remain largely unknown, hampering early detection and prevention strategies. Here, we show that PanIN are abundant in healthy individuals and present at a much higher rate than the incidence of pancreatic cancer, setting the stage for efforts to elucidate the microenvironmental and cell intrinsic factors that restrain, or, conversely, promote, malignant progression.

15.
Cell Metab ; 35(1): 134-149.e6, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36528023

RESUMO

Effective therapies are lacking for patients with advanced colorectal cancer (CRC). The CRC tumor microenvironment has elevated metabolic waste products due to altered metabolism and proximity to the microbiota. The role of metabolite waste in tumor development, progression, and treatment resistance is unclear. We generated an autochthonous metastatic mouse model of CRC and used unbiased multi-omic analyses to reveal a robust accumulation of tumoral ammonia. The high ammonia levels induce T cell metabolic reprogramming, increase exhaustion, and decrease proliferation. CRC patients have increased serum ammonia, and the ammonia-related gene signature correlates with altered T cell response, adverse patient outcomes, and lack of response to immune checkpoint blockade. We demonstrate that enhancing ammonia clearance reactivates T cells, decreases tumor growth, and extends survival. Moreover, decreasing tumor-associated ammonia enhances anti-PD-L1 efficacy. These findings indicate that enhancing ammonia detoxification can reactivate T cells, highlighting a new approach to enhance the efficacy of immunotherapies.


Assuntos
Amônia , Neoplasias Colorretais , Animais , Camundongos , Exaustão das Células T , Linfócitos T , Neoplasias Colorretais/patologia , Imunoterapia , Microambiente Tumoral
16.
Phys Med Biol ; 68(1)2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36541756

RESUMO

Objective.Histology image analysis is a crucial diagnostic step in staging and treatment planning, especially for cancerous lesions. With the increasing adoption of computational methods for image analysis, significant strides are being made to improve the performance metrics of image segmentation and classification frameworks. However, many developed frameworks effectively function as black boxes, granting minimal context to the decision-making process. Thus, there is a need to develop methods that offer reasonable discriminatory power and a biologically-informed intuition to the decision-making process.Approach.In this study, we utilized and modified a discriminative feature-based dictionary learning (DFDL) paradigm to generate a classification framework that allows for discrimination between two distinct clinical histologies. This framework allows us (i) to discriminate between 2 clinically distinct diseases or histologies and (ii) provides interpretable group-specific representative dictionary image patches, or 'atoms', generated during classifier training. This implementation is performed on multiplexed immunofluorescence images from two separate patient cohorts- a pancreatic cohort consisting of cancerous and non-cancerous tissues and a metastatic non-small cell lung cancer (mNSCLC) cohort of responders and non-responders to an immunotherapeutic treatment regimen. The analysis was done at both the image-level and subject-level. Five cell types were selected, namely, epithelial cells, cytotoxic lymphocytes, antigen presenting cells, HelperT cells, and T-regulatory cells, as our phenotypes of interest.Results.We showed that DFDL had significant discriminant capabilities for both the pancreatic pathologies cohort (subject-level AUC-0.8878) and the mNSCLC immunotherapy response cohort (subject-level AUC-0.7221). The secondary analysis also showed that more than 50% of the obtained dictionary atoms from the classifier contained biologically relevant information.Significance.Our method shows that the generated dictionary features can help distinguish patients presenting two different histologies with strong sensitivity and specificity metrics. These features allow for an additional layer of model interpretability, a highly desirable element in clinical applications for identifying novel biological phenomena.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Algoritmos , Microambiente Tumoral , Imunofluorescência
17.
Cancers (Basel) ; 14(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36077630

RESUMO

Despite advances in therapy over the past decades, metastatic colorectal cancer (mCRC) remains a highly morbid disease. While the impact of MHC-I on immune infiltration in mCRC has been well studied, data on the consequences of MHC-II loss are lacking. Multiplex fluorescent immunohistochemistry (mfIHC) was performed on 149 patients undergoing curative intent resection for mCRC and stratified into high and low human leukocyte antigen isotype DR (HLA-DR) expressing tumors. Intratumoral HLA-DR expression was found in stromal bands, and its expression level was associated with different infiltrating immune cell makeup and distribution. Low HLA-DR expression was associated with increased intercellular distances and decreased population mixing of T helper cells and antigen-presenting cells (APC), suggestive of decreased interactions. This was associated with less co-localization of tumor cells and cytotoxic T lymphocytes (CTLs), which tended to be in a less activated state as determined by Ki67 and granzyme B expression. These findings suggest that low HLA-DR in the tumor microenvironment of mCRC may reflect a state of poor helper T-cell interactions with APCs and CTL-mediated anti-tumor activity. Efforts to restore/enhance MHC-II presentation may be a useful strategy to enhance checkpoint inhibition therapy in the future.

18.
Sci Rep ; 12(1): 9054, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641540

RESUMO

Immune checkpoint inhibitors (ICI) with anti-PD-1/PD-L1 agents have improved the survival of patients with metastatic non-small cell lung cancer (mNSCLC). Tumor PD-L1 expression is an imperfect biomarker as it does not capture the complex interactions between constituents of the tumor microenvironment (TME). Using multiplex fluorescent immunohistochemistry (mfIHC), we modeled the TME to study the influence of cellular distribution and engagement on response to ICI in mNSCLC. We performed mfIHC on pretreatment tissue from patients with mNSCLC who received ICI. We used primary antibodies against CD3, CD8, CD163, PD-L1, pancytokeratin, and FOXP3; simple and complex phenotyping as well as spatial analyses was performed. We analyzed 68 distinct samples from 52 patients with mNSCLC. Patients were 39-79 years old (median 67); 44% were male and 75% had adenocarcinoma histology. The most used ICI was atezolizumab (48%). The percentage of PD-L1 positive epithelial tumor cells (EC), degree of cytotoxic T lymphocyte (CTL) engagement with EC, and degree of CTL engagement with helper T lymphocytes (HTL) were significantly lower in non-responders versus responders (p = 0.0163, p = 0.0026 and p = 0.0006, respectively). The combination of these 3 characteristics generated the best sensitivity and specificity to predict non-response to ICI and was also associated with shortened overall survival (p = 0.0271). The combination of low CTL engagement with EC and HTL along with low expression of EC PD-L1 represents a state of impaired endogenous immune reactivity. Together, they more precisely identified non-responders to ICI compared to PD-L1 alone and illustrate the importance of cellular interactions in the TME.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adulto , Idoso , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral
19.
Mol Cancer Res ; 20(7): 1137-1150, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35348737

RESUMO

Targeting the DNA damage response in combination with radiation enhances type I interferon (T1IFN)-driven innate immune signaling. It is not understood, however, whether DNA-dependent protein kinase (DNA-PK), the kinase critical for repairing the majority of radiation-induced DNA double-strand breaks in cancer cells, is immunomodulatory. We show that combining radiation with DNA-PK inhibition increases cytosolic double-stranded DNA and tumoral T1IFN signaling in a cyclic GMP-AMP synthase (cGAS)- and stimulator of interferon genes (STING)-independent, but an RNA polymerase III (POL III), retinoic acid-inducible gene I (RIG-I), and antiviral-signaling protein (MAVS)-dependent manner. Although DNA-PK inhibition and radiation also promote programmed death-ligand 1 (PD-L1) expression, the use of anti-PD-L1 in combination with radiation and DNA-PK inhibitor potentiates antitumor immunity in pancreatic cancer models. Our findings demonstrate a novel mechanism for the antitumoral immune effects of DNA-PK inhibitor and radiation that leads to increased sensitivity to anti-PD-L1 in poorly immunogenic pancreatic cancers. IMPLICATIONS: Our work nominates a novel therapeutic strategy as well as its cellular mechanisms pertinent for future clinical trials combining M3814, radiation, and anti-PD-L1 antibody in patients with pancreatic cancer.


Assuntos
Proteína Quinase Ativada por DNA , Neoplasias Pancreáticas , Inibidores de Proteínas Quinases , RNA Polimerase III , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases , Piridazinas , Quinazolinas , Neoplasias Pancreáticas
20.
Sci Rep ; 12(1): 3708, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260589

RESUMO

Spatial pattern modelling concepts are being increasingly used in capturing disease heterogeneity. Quantification of heterogeneity in the tumor microenvironment is extremely important in pancreatic ductal adenocarcinoma (PDAC), which has been shown to co-occur with other pancreatic diseases and neoplasms with certain attributes that make visual discrimination difficult. In this paper, we propose the GaWRDenMap framework, that utilizes the concepts of geographically weighted regression (GWR) and a density function-based classification model, and apply it to a cohort of multiplex immunofluorescence images from patients belonging to six different pancreatic diseases. We used an internal cohort of 228 patients comprised of 34 Chronic Pancreatitis (CP), 71 PDAC, 70 intraductal papillary mucinous neoplasm (IPMN), 16 mucinous cystic neoplasm (MCN), 29 pancreatic intraductal neoplasia (PanIN) and 8 IPMN-associated PDAC patients. We utilized GWR to model the relationship between epithelial cells and immune cells on a spatial grid. The GWR model estimates were used to generate density signatures which were used in subsequent pairwise classification models to distinguish between any two pairs of disease groups. Image-level, as well as subject-level analysis, were performed. When applied to this dataset, our classification model showed significant discrimination ability in multiple pairwise comparisons, in comparison to commonly used abundance-based metrics, like the Morisita-Horn index. The model was able to best discriminate between CP and PDAC at both the subject- and image-levels. It was also able to reasonably discriminate between PDAC and IPMN. These results point to a potential difference in the spatial arrangement of epithelial and immune cells between CP, PDAC and IPMN, that could be of high diagnostic significance. Further validation on a more comprehensive dataset would be warranted.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Intraductais Pancreáticas , Neoplasias Pancreáticas , Pancreatite Crônica , Carcinoma Ductal Pancreático/patologia , Comunicação Celular , Humanos , Neoplasias Intraductais Pancreáticas/patologia , Neoplasias Pancreáticas/patologia , Pancreatite Crônica/complicações , Microambiente Tumoral , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...